Year 13 Maths - Pure and Mechanics Teacher

Topic		Ref	Ex
Radians	Radian Measure - Understand and use radians as a measure of angles - Convert between degrees and radians - Know exact values of angles measured in radians	$\begin{aligned} & \hline \text { P5.1 } \\ & \text { P5.3 } \end{aligned}$	$\begin{aligned} & 5 A \\ & 5 B \end{aligned}$
	Arc Length and Area of Sector or Segment - Find an arc length using radians - Find areas of sectors and segments using radians.	P5.1	5C 5D
	Solving Trigonometric Equations - Use and apply models that involve quadratic functions	P5.7	5E
	Small angle approximations - Use approximate trigonometric values when Θ is small.	P5.2	5F
Differentiation	Trigonometric functions $1(\boldsymbol{\operatorname { s i n }} \mathrm{x}$ and $\boldsymbol{\operatorname { c o s }} \mathrm{x}$) - Differentiate $\sin \mathrm{x}$ and $\cos \mathrm{x}$ from first principles - Differentiate sin kx and $\cos \mathrm{kx}$.	P7.1	9A
	Exponentials and Logarithms - Differentiate exponentials and logarithms including e^{kx}, a^{kx}, In x and $\ln \mathrm{kx}$.	P7.2	9B
	Chain Rule - Differentiate composite functions and functions of functions using the chain rule.	P7.4	9 C
	Product Rule - Differentiate the product of two functions using the product rule.	P7.4	9D
	Quotient Rule - Differentiate the quotient of two functions using the product rule.	P7.4	9E
	Trigonometric functions 2 - Differentiate tan kx, cosec kx, sec kx and cot kx - Use the chain rule to differentiate composite trigonometric functions.	P7.4	9F
	Parametric Differentiation - Differentiate functions defined parametrically without converting to Cartesian form. - Use this to find equations of tangents and normals.	P7.5	9G
	Implicit Differentiation - Differentiate functions defined implicitly. - Use this to find equations of tangents and normal.	P7.5	9 H
	Second Derivatives - Use the second derivative to determine whether a curve is convex or concave on a given domain. - Use it to determine the nature of a stationary point.	P7.1	91
	Rates of Change - Use the chain rule to connect rates of change in situations involving more than one variable.	P7.4	9J
Term 1 Assessment			

Year 13 Maths - Pure and Mechanics Teacher

Topic		Ref	Ex
Integration	Standard Functions - Integrate $e^{k x}, 1 / x, \sin k x, \cos k x$ and other trigonometric functions	P8.2	11A
	f(ax+b) - Integrate a function of the form $f(a x+b)$ by using the reverse chain rule for differentiation.	P8.2	11B
	Using Trigonometric Identities - Use trigonometric identities to make the integrant into something that can be integrated.	P8.2	11C
	Integration "by sight" - Integrate by sight functions of the form: $k \frac{f^{\prime}(x)}{f(x)} \text { or } k f^{\prime}(x)(f(x))^{n}$	P8.5	11D
	Integration by Substitution - Use a substitution to simplify an integral - Includes definite integrals.	P8.5	11E
	Integration by Parts - Use integration by parts to integrate a product of functions - Use this technique to integrate $\ln \mathrm{x}$, - Use more than one application of this method e.g. for integrating $\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}$.	P8.5	11F
	Partial Fractions - Integrate algebraic fractions using partial fractions	P8.6	11G
	Finding Areas under or between curves - Use any of the integration techniques to find areas under or between curves.	P8.3	11H
	Trapezium Rule - Use the trapezium rule to approximate the area under a curve whose function you cannot integrate algebraically. - Determine whether this gives an under or over estimate.	P9.4	111
	Differential Equations - Solve first order differential equations by separating the variables. - Interpret the solution of a DE in the context of solving a problem.	$\begin{aligned} & \hline \text { P8.7 } \\ & \text { P8.8 } \end{aligned}$	$\begin{aligned} & \hline 11 \mathrm{~J} \\ & 11 \mathrm{~K} \end{aligned}$
Term 2 Assessment			

Year 13 Maths - Pure and Mechanics Teacher

Topic		Ref	Ex
Vectors in 3D	Vectors in 3 dimensions - Use vectors in 3D both in column vector form and \mathbf{i}, \mathbf{j}, k unit vector form. - Find the angle between a 3D vector and any of the coordinate axes	P10.1	$\begin{aligned} & 12 \mathrm{~A} \\ & 12 \mathrm{~B} \end{aligned}$
	Geometric Problems - Solve geometric problems involving vectors in 3D	P10.5	12C
	Mechanics Problems - Model problems in mechanics using 3D vectors	P10.5	12D
Moments	Definition - Understand the definition of a moment - Calculate the turning effort of a force applied to a rigid body - the moment.	A9.1	A4A
	Resultant Moments - Find the resultant moment for several coplanar forces acting on a rigid body.	A9.1	A4B
	Equilibrium - Solve problems involving uniform rods in equilibrium	A9.1	A4C
	Centres of Mass - Solve problems involving non-uniform rods in equilibrium by finding its centre of mass.	A9.1	A4D
	Tilting - Solve problems involving uniform rods on the point of tilting.	A9. 1	A4E
Forces and Friction	Resolving Forces - Resolve forces into components - Use the triangle law to find a resultant force.	A8. 2 A8. 4 A8. 5	A5A
	Inclined Planes - Resolve forces into components parallel to and at right angles to the inclined plane	$\begin{aligned} & \hline \text { A8.4 } \\ & \text { A8.5 } \end{aligned}$	A5B
	Friction - Understand Friction and the coefficient of friction - Use $\mathrm{F} \leq \mu \mathrm{R}$ model for friction	A8.6	A5C
Projectiles	Horizontal Projection - Model motion under gravity for an object projected horizontally	A7.5	A6A
	Projection at any angle - Resolve velocity into horizontal and vertical components. - Solve problems involving particles projected at an angle	$\begin{aligned} & \text { A7.3 } \\ & \text { A7.5 } \end{aligned}$	$\begin{aligned} & \text { A6B } \\ & \text { A6C } \end{aligned}$
	Projectile motion formulae - Derive the formulae for time of flight, range and greatest height, and the equation of the path of a projectile.	A7.5	A6D
Term 3 Assessment			

Year 13 Maths - Pure and Mechanics Teacher

Topic		Ref	Ex
Applications of Forces	Static Particles - Use force diagrams to model objects in static equilibrium. - Find an unknown force when a system is in equilibrium - Solve statics problems involving weights, tension and pulleys. - Understand and solve problems involving limiting equilibrium and friction.	$\begin{aligned} & \text { A8.4 } \\ & \text { A8. } 6 \end{aligned}$	$\begin{aligned} & \text { A7A } \\ & \text { A7B } \\ & \text { A7C } \end{aligned}$
	Static Rigid Bodies - Solve static problems including rotational forces acting on an object.	A8.6	A7D
	Dynamics and Inclined Planes - Solve problems involving motion on smooth or rough inclined planes.	A8.6	A7E
	Connected Particles - Solve problems involving connected particles that require the resolution of forces.	$\begin{aligned} & \hline \text { A8.5 } \\ & \text { A8.6 } \end{aligned}$	A7F
Further Kinematics	Vectors in Kinematics - Use two dimensional vectors to describe motion in a plane. - Work with vectors for displacement, velocity and acceleration when using the vector equations of motion. - Use vector equations of motion for projectiles in a vertical plane	A7.3	$\begin{aligned} & \text { A8A } \\ & \text { A8B } \end{aligned}$
	Variable Acceleration - Understand how to model variable acceleration as a function of time. - Use calculus for harder functions of time, including trigonometric or exponential functions. - Differentiate and integrate vectors with respect to time. - Use calculus with vectors to solve problems involving motion in two dimensions with variable acceleration.	A7.4	$\begin{aligned} & \text { A8C } \\ & \text { A8D } \\ & \text { A8E } \end{aligned}$
Term 4 Assessment			

